Restricted Isometry Constants for Gaussian and Rademacher matrices

نویسندگان

  • Sandrine Dallaporta
  • Yohann de Castro
چکیده

Restricted Isometry Constants (RICs) are a pivotal notion in Compressed Sensing as these constants finely assess how a linear operator is conditioned on the set of sparse vectors and hence how it performs in stable and robust sparse regression (SRSR). While it is an open problem to construct deterministic matrices with apposite RICs, one can prove that such matrices exist using random matrices models. In this paper, we show upper bounds on RICs for Gaussian and Rademacher matrices using state-of-the-art small deviation estimates on their extreme eigenvalues. This allows us to derive a lower bound on the probability of getting SRSR. One of the benefits of this approach is to introduce a simple tool from Random Matrix Theory to derive upper bounds on RICs and phase transition on SRSR from small deviations on the extreme eigenvalues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robustness Properties of Dimensionality Reduction with Gaussian Random Matrices

In this paper we study the robustness properties of dimensionality reduction with Gaussian random matrices having arbitrarily erased rows. We first study the robustness property against erasure for the almost norm preservation property of Gaussian random matrices by obtaining the optimal estimate of the erasure ratio for a small given norm distortion rate. As a consequence, we establish the rob...

متن کامل

On Support Sizes of Restricted Isometry Constants

A generic tool for analyzing sparse approximation algorithms is the restricted isometry property (RIP) introduced by Candès and Tao. For qualitative comparison of sufficient conditions derived from an RIP analysis, the support size of the RIP constants is generally reduced as much as possible with the goal of achieving a support size of twice the sparsity of the target signal. Using a quantitat...

متن کامل

Bounds on restricted isometry constants of random matrices

In this paper we look at isometry properties of random matrices. During the last decade these properties gained a lot attention in a field called compressed sensing in first place due to their initial use in [7, 8]. Namely, in [7, 8] these quantities were used as a critical tool in providing a rigorous analysis of l1 optimization’s ability to solve an under-determined system of linear equations...

متن کامل

Improved Bounds on Restricted Isometry Constants for Gaussian Matrices

The Restricted Isometry Constants (RIC) of a matrix A measures how close to an isometry is the action of A on vectors with few nonzero entries, measured in the `2 norm. Specifically, the upper and lower RIC of a matrix A of size n ×N is the maximum and the minimum deviation from unity (one) of the largest and smallest, respectively, square of singular values of all `N k ́ matrices formed by taki...

متن کامل

Bounds of restricted isometry constants in extreme asymptotics: formulae for Gaussian matrices

Restricted Isometry Constants (RICs) provide a measure of how far from an isometry a matrix can be when acting on sparse vectors. This, and related quantities, provide a mechanism by which standard eigen-analysis can be applied to topics relying on sparsity. RIC bounds have been presented for a variety of random matrices and matrix dimension and sparsity ranges. We provide explicitly formulae f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1604.01171  شماره 

صفحات  -

تاریخ انتشار 2016